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MODULE –  

VHDL, LATCHES AND FLIP-FLOPS 

INTROIDUCTION TO VHDL 

The acronym VHDL stands for VHSIC-HDL (Very High Speed Integrated Circuit-Hardware Description 

Language). VHDL is a hardware description language that is used to describe the behavior and structure 

of digital systems. VHDL is a general-purpose hardware description language which can be used to 

describe and simulate the operation of a wide variety of digital systems, ranging in complexity from a few 

gates to an interconnection of many complex integrated circuits.  

VHDL was originally developed to allow a uniform method for specifying digital systems. The VHDL 

language became an IEEE standard in 1987, and it is widely used in industry. IEEE published a revised 

VHDL standard in 1993. 

VHDL can describe a digital system at several different levels—behavioral, data flow, and structural. For 

example,  

o A binary adder could be described at the behavioral level in terms of its function of adding two 

binary numbers, without giving any implementation details.  

o The same adder could be described at the data flow level by giving the logic equations for the 

adder.  

o Finally, the adder could be described at the structural level by specifying the interconnections of 

the gates which make up the adder. 

 

VHDL DESCRIPTION OF COMBINATIONAL CIRCUITS: 

In VHDL, a signal assignment statement has the form:  

The expression is evaluated when the statement is executed, and the signal on the left side is scheduled to 

change after delay. The square brackets indicate that after delay is optional. If after delay is omitted, then 

the signal is scheduled to be updated after a delta delay, ∆ (infinitesimal delay). A VHDL signal is used 

to describe a signal in a physical system. The VHDL language also includes variables similar to variables 

in programming languages.  

In general, VHDL is not case sensitive, that is, capital and lower case letters are treated the same by the 

compiler and the simulator. Signal names and other VHDL identifiers may contain letters, numbers, and 

the underscore character ( _ ). An identifier must start with a letter, and it cannot end with an underscore. 

Thus, C123 and ab_23 are legal identifiers, but 1ABC and ABC_ are not. Every VHDL statement must be 

terminated with a semicolon. Spaces, tabs, and carriage returns are treated in the same way. This means 

that a VHDL statement can be continued over several lines, or several statements can be placed on one 

line. In a line of VHDL code, anything following a double dash (--) is treated as a comment. Words such 
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as and, or, and after are reserved words (or keywords) which have a special meaning to the VHDL 

compiler. 

 

The gate circuit of the following Figure has five signals: A, B, C, D, and E. The symbol “ <= ” is the 

signal assignment operator which indicates that the value computed on the right-hand side is assigned to 

the signal on the left side. 

 

Dataflow Description: The two assignment statements (given below) give a dataflow description of the 

above circuit, where it is assumed that each gate has a 5-ns propagation delay. When these statements are 

simulated, the first statement will be evaluated any time A or B changes, and the second statement will be 

evaluated any time C or D changes. Suppose that initially A = 1, and B = C = D = E = 0; and if B changes 

to 1 at time 0, C will change to 1 at time = 5 ns. Then, E will change to 1 at time = 10 ns. 

C <= A and B after 5 ns; 

E <= C or D after 5 ns; 

VHDL signal assignment statements (as given above) are concurrent statements. The VHDL simulator 

monitors the right side of each concurrent statement, and any time a signal changes, the expression on the 

right side is immediately re-evaluated. The new value is assigned to the signal on the left side after an 

appropriate delay. This is exactly the way the hardware works. Any time a gate input changes, the gate 

output is recomputed by the hardware, and the output changes after the gate delay. Unlike a sequential 

program, the order of the above concurrent statements is unimportant. 

 

Behavioral Description: A behavioral description of the above circuit shown is 

E <= D or (A and B); 

Parentheses are used to specify the order of operator execution. 

 

Structural Description: The above circuit shown can also be described using structural VHDL code. To 

do so requires that a two-input AND-gate component and a two-input OR-gate component be declared 

and defined.  

Components may be declared and defined either in a library or within the architecture part of the VHDL 

code. Instantiation statements are used to specify how components are connected. Each copy of a 

component requires a separate instantiation statement to specify how it is connected to other components 

and to the port inputs and outputs. An instantiation statement is a concurrent statement that executes 
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anytime one of the input signals in its port map changes. The circuit shown is described by instantiating 

the AND gate and the OR gate as follows: 

Gate1: AND2 port map (A, B, D); 

Gate2: OR2 port map (C, D, E); 

The port map for Gate1 connects A and B to the AND-gate inputs, and it connects D to the AND-gate 

output. Since an instantiation statement is concurrent, whenever A or B changes, these changes go to the 

Gate1 inputs, and then the component computes a new value of D. Similarly, the second statement passes 

changes in C or D to the Gate 2 inputs, and then the component computes a new value of E. This is 

exactly how the real hardware works. (The order in which the instantiation statements appear is 

irrelevant). 

Instantiating a component is different than calling a function in a computer program. A function returns a 

new value whenever it is called, but an instantiated component computes a new output value whenever its 

input changes. 

 

The following Figure shows an inverter with the output connected back to the input. If the output is „0‟, 

then this „0‟ feeds back to the input and the inverter output changes to „1‟ after the inverter delay, 

assumed to be 10 ns. Then, the „1‟ feeds back to the input, and the output changes to „0‟ after the inverter 

delay. The signal CLK will continue to oscillate between „0‟ and „1‟, as shown in the waveform. The 

corresponding concurrent VHDL statement will produce the same result. If CLK is initialized to „0‟, the 

statement executes and CLK changes to „1‟ after 10 ns. Because CLK has changed, the statement 

executes again, and CLK will change back to „0‟ after another 10 ns. This process will continue 

indefinitely. 

 

The following Figure shows three gates that have the signal A as a common input and the corresponding 

VHDL code. The three concurrent statements execute simultaneously whenever A changes, just as the 

three gates start processing the signal change at the same time. However, if the gates have different 

delays, the gate outputs can change at different times. If the gates have delays of 2 ns, 1 ns, and 3 ns, 

respectively, and A changes at time 5 ns, then the gate outputs D, E, and F can change at times 7 ns, 6 ns, 

and 8 ns, respectively. However, if no delays were specified, then D, E, and F would all be updated at 

time 5 + ∆. 

21CS33



ANALOG AND DIGITAL ELECTRONICS 
 

4 

 

 

In these examples, every signal is of type bit, which means it can have a value of „0‟ or „1‟. (Bit values in 

VHDL are enclosed in single quotes to distinguish them from integer values). In digital design, we often 

need to perform the same operation on a group of signals. A one-dimensional array of bit signals is 

referred to as a bit-vector. If a 4-bit vector named B has an index range 0 through 3, then the four 

elements of the bit-vector are designated B(0), B(1), B(2), and B(3). The statement B <= “0110”, assigns 

„0‟ to B(0), „1‟ to B(1), „1‟ to B(2), and „0‟ to B(3). 

The following Figure shows an array of four AND gates. The inputs are represented by bit-vectors A and 

B, and the outputs by bit-vector C. Although we can write four VHDL statements to represent the four 

gates, it is much more efficient to write a single VHDL statement that performs the and operation on the 

bit-vectors A and B. When applied to bit-vectors, the and operator performs the and operation on 

corresponding pairs of elements. 

 

 

Inertial delay model: Signal assignment statements containing “after delay” create what is called an 

inertial delay model. Consider a device with an inertial delay of D time units. If an input change to the 

device will cause its output to change, then the output changes D time units later. However, this is not 

what happens if the device receives two input changes within a period of D time units and both input 

changes should cause the output to change. In this case the device output does not change in response to 

either input change. 

Example: consider the signal assignment   C <= A and B after 10 ns; 
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Assume A and B are initially 1, and A changes to 0 at 15 ns, to 1 at 30 ns, and to 0 at 35 ns. Then C 

changes to 1 at 10 ns and to 0 at 25 ns, but C does not change in response to the A changes at 30 ns and 

35 ns; because these two changes occurred  less than 10 ns apart.  

A device with an inertial delay of D time units filters out output changes that would occur in less than or 

equal to D time units. 

 

Ideal (Transport) delay: VHDL can also model devices with an ideal (transport) delay. Output changes 

caused by input changes to a device exhibiting an ideal (transport) delay of D time units are delayed by D 

time units, and the output changes occur even if they occur within D time units. The VHDL signal 

assignment statement that models ideal (transport) delay is 

 

Example: consider the signal assignment   C <= transport A and B after 10 ns; 

Assume A and B are initially 1 and A changes to 0 at 15 ns, to 1 at 30 ns, and to 0 at 35 ns. Then C 

changes to 1 at 10 ns, to 0 at 25 ns, to 1 at 40 ns, and to 0 at 45 ns. Note that the last two changes are 

separated by just 5 ns. 

 

VHDL MODELS FOR MULTIPLEXERS: 

The following Figure shows a 2-to-1 multiplexer (MUX) with two data inputs and one control input.  

 

The MUX output is 𝐹 = 𝐴′ 𝐼0 + 𝐴𝐼1 . The corresponding VHDL statement is 

F <= (not A and I0) or (A and I1); 

Alternatively, we can represent the MUX by a conditional signal assignment statement,  

F <= I0 when A = „0‟ else I1; 

This statement executes whenever A, I0, or I1 changes. The MUX output is I0 when A = „0‟, and else it is 

I1. In the conditional statement, I0, I1, and F can either be bits or bit-vectors. 
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The following Figure shows how two cascaded MUXes can be represented by a conditional signal 

assignment statement. The output MUX selects A when E = „1‟; or else it selects the output of the first 

MUX, which is B when D = „1‟, or else it is C. 

 

The following Figure shows a 4-to-1 MUX with four data inputs and two control inputs, A and B. The 

control inputs select which one of the data inputs is transmitted to the output. The logic equation for the 

4-to-1 MUX is   𝐹 = 𝐴′𝐵′𝐼0 + 𝐴′𝐵𝐼1 + 𝐴𝐵′𝐼2 + 𝐴𝐵𝐼3. 

One way to model the MUX is with the VHDL statement  

F <= (not A and not B and I0) or (not A and B and I1) or 

(A and not B and I2) or (A and B and I3); 

Another way to model the 4-to-1 MUX is to use a conditional assignment statement (given in Figure 

below): 

 

The expression A&B means A concatenated with B, that is, the two bits A and B are merged together to 

form a 2-bit vector. This bit vector is tested, and the appropriate MUX input is selected. For example, if A 

= „1‟ and B = „0‟, A&B = “10” and I2 is selected.  

Instead of concatenating A and B, we could use a more complex condition also (as given in above 

Figure). 

A third way to model the MUX is to use a selected signal assignment statement; we first set Sel equal to 

A&B. The value of Sel then selects the MUX input that is assigned to F.  

The general form of a selected signal assignment statement is 
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First, expression_s is evaluated. If it equals choice1, signal_s is set equal to expression1; if it equals 

choice2, signal_s is set equal to expression2; etc. If all possible choices for the value of expression_s are 

given, the last line should be omitted; otherwise, the last line is required. When it is present, if 

expression_s is not equal to any of the enumerated choices, signal_s is set equal to expression_n. The 

signal_s is updated after the specified delay-time, or after  if the “after delay-time” is omitted. 

 

VHDL MODULES: 

To write a complete VHDL module, we must declare all of the input and output signals using an entity 

declaration, and then specify the internal operation of the module using an architecture declaration. As an 

example, consider the following Figure. 

 

When we describe a system in VHDL, we must specify an entity and architecture at the top level. The 

entity declaration gives the name “two_gates” to the module. The port declaration specifies the inputs and 

outputs to the module. A, B, and D are input signals of type bit, and E is an output signal of type bit. The 

architecture is named “gates”. The signal C is declared within the architecture because it is an internal 

signal. The two concurrent statements that describe the gates are placed between the keywords begin and 

end. 

 

Example: To write the entity and architecture for a full adder module. 

The entity specifies the inputs and outputs of the adder module, as shown in the following Figure. The 

port declaration specifies that X, Y and Cin are input signals of type bit, and that Cout and Sum are 

output signals of type bit. 

 

The operation of the full adder is specified by an architecture declaration: 
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VHDL Modules 

 

To write a complete VHDL module, we must declare all of the input and output signals using 

an entity declaration, and then specify the internal operation of the module using an 

architecture declaration. 

The two concurrent statements that describe the gates are placed between the keywords begin 

and end. 

 

When we describe a system in VHDL, we must specify an entity and an architecture at the 

top level, and also specify an entity and architecture for each of the component modules that 

are part of the system. Each entity declaration includes a list of interface signals that can be 

used to connect to other 

modules or to the outside world. We will use entity declarations of the form: 

 

entity entity-name is 

[port(interface-signal-declaration);] 

end [entity] [entity-name]; 

 

The items enclosed in square brackets are optional. The interface-signal-declaration 

normally has the following form: 

 

list-of-interface-signals: mode type [: _ initial-value] 

{; list-of-interface-signals: mode type [: _ initial-value]}; 

 

 
 

The curly brackets indicate zero or more repetitions of the enclosed clause. Input signals are 

of mode in, output signals are of mode out, and bi-directional signals are of mode inout. 

 

Associated with each entity is one or more architecture declarations of the form 

 

architecture architecture-name of entity-name is 

[declarations] 

begin 

architecture body 

end [architecture] [architecture-name]; 

 

In the declarations section, we can declare signals and components that are used within the 

architecture. The architecture body contains statements that describe the operation of the 

module. 
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In this example, the architecture name (Equations) is arbitrary, but the entity name (FullAdder) must 

match the name used in the associated entity declaration. 

The VHDL assignment statements for Sum and Cout represent the logic equations for the full adder. 

Several other architectural descriptions such as a truth table or an interconnection of gates could have 

been used instead. In the Cout equation, parentheses are required around (X and Y) because VHDL does 

not specify an order of precedence for the logic operators. 

 

Four-Bit Full Adder: The FullAdder module defined above can be used as a component in a system 

which consists of four full adders connected to form a 4-bit binary adder (see the following Figure).  

 

First declare the 4-bit adder as an entity (see the following Figure). Since, the inputs and the sum output 

are four bits wide, declare them as bit_vectors which are dimensioned 3 downto 0.  

Next, specify the FullAdder as a component within the architecture of Adder4 (see the following Figure). 

The component specification is very similar to the entity declaration for the full adder, and the input and 

output port signals correspond to those declared for the full adder. Following the component statement, 

declare a 3-bit internal carry signal C. 

In the body of the architecture, create several instances of the FullAdder component. Each copy of 

FullAdder has a name (such as FA0) and a port map.  

The signal names following the port map correspond one-to-one with the signals in the component port. 

Thus, A(0), B(0), and Ci correspond to the inputs X, Y, and Cin, respectively. C(1) and S(0) correspond 

to the Cout and Sum outputs.  

Note that the order of the signals in the port map must be the same as the order of the signals in the port of 

the component declaration. 
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Homework: 

1] Write VHDL statements that represent the following circuit: 

a) Write a statement for each gate. 

b) Write one statement for the whole circuit. 

 

2] Draw the circuit represented by the following VHDL statements: 

F <= E and I; 

I <= G or H; 

G <= A and B; 

H <= not C and D; 

3] Write  

a) a complete VHDL module for a two-input NAND gate with 4-ns delay. 

b) Write a complete VHDL module for the following circuit that uses the NAND gate module of Part 

(a) as a component. 
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LATCHES & FLIP-FLOPS 

Sequential switching circuits have the property that the output depends not only on the present input but 

also on the past sequence of inputs. In effect, these circuits must be able to “remember” something about 

the past history of the inputs in order to produce the present output. Latches and flip-flops are commonly 

used memory devices in sequential circuits. Basically, latches and flip-flops are memory devices which 

can assume one of two stable output states and which have one or more inputs that can cause the output 

state to change. 

 

SET RESET LATCH: 

A simple latch can be constructed by introducing feedback into a NOR-gate circuit, as given in the 

following Figure (a). As indicated, if the inputs are S = R = 0, the circuit can assume a stable state with Q 

= 0 and P = 1.  

 

(a) S = 0 & R = 0: A stable condition of the circuit because P = 1 feeds into the second gate forcing 

the output to be Q = 0, and Q = 0 feeds into the first gate allowing its output to be 1. 

(b) S = 1 & R = 0: An unstable condition or state of the circuit because both the inputs and output of 

the second gate are 0; therefore Q will change to 1, leading to the stable state. 

 

(a) S = 0 & R = 0: The circuit will not change state because Q = 1 feeds back into the first gate, 

causing P to remain 0. 

Note that the inputs are again S = 0 & R = 0, but the outputs are different than those with which we 

started. Thus, the circuit has two different stable states for a given set of inputs. 

(b) S = 0 & R = 1: Q will become 0 and P will then change back to 1. 

An input S = 1 sets the output to Q = 1, and an input R = 1 resets the output to Q = 0.The circuit is 

commonly referred to as a set-reset (S-R) latch (restriction that R and S cannot be 1 simultaneously). 

. 
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This circuit is said to have memory because its output depends not only on the present inputs, but also on 

the past sequence of inputs. If we restrict the inputs so that R = S = 1 is not allowed, the stable states of 

the outputs P and Q are always complements, that is, P = Q’. To emphasize the symmetry between the 

operation of the two gates, the circuit is often drawn in cross-coupled form, as shown in the following 

Figure (a). 

 

If S = R = 1, the latch will not operate properly, as shown in above Figure (c). Note that, when S and R 

are both l, P and Q are both 0. Therefore, P is not equal to Q’, and this violates a basic rule of latch 

operation. 

The following Figure shows a timing diagram for the S-R latch. Note that when S changes to 1 at time tl, 

Q changes to 1 a short time (ɛ - response time or delay time of latch) later. At time t2, when S changes 

back to 0, Q does not change. At time t3, R changes to 1, and Q changes back to 0 a short time (ɛ) later. 

The duration of the S (or R) input pulse must normally be at least as great as ɛ in order for a change in the 

state of Q to occur.  

 

When discussing latches and flip-flops, we use the term present state to denote the state of the Q output of 

the latch or flip-flop at the time any input signal changes, and the term next state to denote the state of the 

Q output after the latch or flip-flop has reacted to the input change and stabilized. If we let Q(t) represent 

the present state and Q(t + ɛ) represent the next state, an equation for Q(t + ɛ) can be obtained from the 

circuit by conceptually breaking the feedback loop at Q and considering Q(t) as an input and Q(t + ɛ) as 

the output. Then for the S-R latch;  
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The equation for output P is;   

 

These equations are mapped in the next-state and output tables as given in the following Table. The stable 

states of the latch are circled. Note that for all stable states, P = Q except when S = R = 1. Making S = R = 

1, a don‟t-care combination allows simplifying the next-state equation. 

 

An equation that expresses the next state of a latch in terms of its present state and inputs will be referred 

to as a next-state equation, or characteristic equation. 

An alternative form of the S-R latch uses NAND gates, as shown in the following Figure. 

 

Applications of S-R Latch: S-R latch is often used as a component in more complex latches and flip-flops 

and in asynchronous systems. Another useful application of the S-R latch is for debouncing switches. 

When a mechanical switch is opened or closed, the switch contacts tend to vibrate or bounce open and 

closed several times before settling down to their final position. This produces a noisy transition, and this 

noise can interfere with the proper operation of a logic circuit. The input to the switch in the following 

Figure is connected to a logic 1 (+ V). The pull-down resistors connected to contacts a and b assure that 

when the switch is between a and b the latch inputs S and R will always be at a logic 0, and the latch 

output will not change state. The timing diagram shows what happens when the switch is flipped from a 

to b. As the switch leaves a, bounces occur at the R input; when the switch reaches b, bounces occur at 

the S input. After the switch reaches b, the first time S becomes 1, after a short delay the latch switches to 

the Q = 1 state and remains there. Thus Q is free of all bounces even though the switch contacts bounce.  
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GATED D LATCH: 

A gated D latch (given in Figure below) has two inputs—a data input (D) and a gate input (G). The D 

latch can be constructed from an S-R latch and gates. When G = 0, S = R = 0, so Q does not change. 

When G = 1 and D = 1, S = 1 and R = 0, so Q is set to 1. When G = 1 and D = 0, S = 0 and R = 1, so Q is 

reset to 0.  

In other words, when G = 1, the Q output follows the D input, and when G = 0, the Q output holds the last 

value of D (no state change). This type of latch is also referred to as a transparent latch because when G = 

1, the Q output is the same as the D input. From the truth table, the characteristic equation for the latch is 

𝑄+ = 𝐺 ′𝑄 + 𝐺𝐷. 

 

 

 

EDGE-TRIGGERED D FLIP-FLOP: 

A D flip-flop has two inputs, D (data) and Ck (clock). The small arrowhead on the flip-flop symbol 

identifies the clock input. Unlike the D latch, the flip-flop output changes only in response to the clock, 

not to a change in D.  

o If the output can change in response to a 0 to 1 transition on the clock input, we say that the flip-

flop is triggered on the rising edge (or positive edge) of the clock.  

o If the output can change in response to a 1 to 0 transition on the clock input, we say that the flip-

flop is triggered on the falling edge (or negative edge) of the clock.  

o An inversion bubble on the clock input indicates a falling-edge trigger (Figure (b)), and no bubble 

indicates a rising-edge trigger (Figure (a)).  
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o The term active edge refers to the clock edge (rising or falling) that triggers the flip-flop state 

change. 

 

Since, the Q output of the flip-flop is the same as the D input, except that the output changes are delayed 

until after the active edge of the clock pulse, as illustrated in the following. 

 

A rising-edge-triggered D flip-flop can be constructed from two gated D latches and an inverter, as shown 

in Figure the following Figure (a). The timing diagram is shown in Figure (b). 

 

When CLK = 0, G1 = 1, and the first latch is transparent so that the P output follows the D input. Because 

G2 = 0, the second latch holds the current value of Q. When CLK changes to 1, G1 changes to 0, and the 

current value of D is stored in the first latch. Because G2 = 1, the value of P flows through the second 

latch to the Q output. When CLK changes back to 0, the second latch takes on the value of P and holds it 

and, then, the first latch starts following the D input again. If the first latch starts following the D input 

before the second latch takes on the value of P, the flip-flop will not function properly. Therefore, the 

circuit designers must pay careful attention to timing issues when designing edge-triggered flip-flops. 

With this circuit, output state changes occur only following the rising edge of the clock. The value of D at 

the time of the rising edge of the clock determines the value of Q, and any extra changes in D that occur 

between rising clock edges have no effect on Q. 
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A flip-flop changes state only on the active edge of the clock, the propagation delay of a flip-flop is the 

time between the active edge of the clock and the resulting change in the output. However, there are also 

timing issues associated with the D input.  

To function properly, the D input to an edge-triggered flip-flop must be held at a constant value for a 

period of time before and after the active edge of the clock. If D changes at the same time as the active 

edge, the behavior is unpredictable.  

The amount of time that the D input must be stable before the active edge is called the setup time (tsu), 

and the amount of time that the D input must hold the same value after the active edge is the hold time 

(th). The times at which D is allowed to change during the clock cycle are shaded in the timing diagram of 

the following Figure. 

 

The propagation delay (tp) from the time the clock changes until the Q output changes is also indicated in 

the above Figure.  

Using these timing parameters, we can determine the minimum clock period for a circuit which will not 

violate the timing constraints. Consider the circuit of following Figure (a). Suppose the inverter has a 

propagation delay of 2 ns, and suppose the flip-flop has a propagation delay of 5 ns and a setup time of 3 

ns. (The hold time does not affect this calculation). Suppose, as in following Figure (b), that the clock 

period is 9 ns, i.e., 9 ns is the time between successive active edges (rising edges for this figure). Then, 5 

ns after a clock edge, the flip-flop output will change, and 2 ns after that, the output of the inverter will 

change. Therefore, the input to the flip-flop will change 7 ns after the rising edge, which is 2 ns before the 

next rising edge. But the setup time of the flip-flop requires that the input be stable 3 ns before the rising 

edge; therefore, the flip-flop may not take on the correct value. 

Suppose instead that the clock period were 15 ns, as in following Figure (c). Again, the input to the flip-

flop will change 7 ns after the rising edge. However, because the clock is slower, this is 8 ns before the 

next rising edge. Therefore, the flip-flop will work properly. Note in Figure (c) that there is 5 ns of extra 

time between the time the D input is correct and the time when it must be correct for the setup time to be 

satisfied. Therefore, we can use a shorter clock period, and have less extra time, or no extra time. Figure 

(d) shows that 10 ns is the minimum clock period which will work for this circuit. 
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S-R FLIP-FLOP: 

An S-R flip-flop (following Figure) is similar to an S-R latch in that S = 1 sets the Q output to 1, and R = 

1 resets the Q output to 0. The essential difference is that the flip-flop has a clock input, and the Q output 

can change only after an active clock edge. 

 

The truth table and characteristic equation for the flip-flop are the same as for the latch, but the 

interpretation of Q
+
 is different. For the latch, Q

+
 is the value of Q after the propagation delay through the 

latch, while for the flip-flop, Q
+
 is the value that Q assumes after the active clock edge. 

 

The following Figure (a) shows an S-R flip-flop constructed from two S-R latches and gates. This flip-

flop changes state after the rising edge of the clock. The circuit is often referred to as a master-slave flip-

flop. When CLK = 0, the S and R inputs set the outputs of the master latch to the appropriate value while 

the slave latch holds the previous value of Q. When the clock changes from 0 to 1, the value of P is held 

in the master latch and this value is transferred to the slave latch. The master latch holds the value of P 

while CLK = 1, and, hence, Q does not change. When the clock changes from 1 to 0, the Q value is 
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latched in the slave, and the master can process new inputs. Figure (b) shows the timing diagram. 

Initially, S = 1 and Q changes to 1 at t1. Then R = 1 and Q changes to 0 at t3. 

 

 

For a rising-edge-triggered flip-flop, the value of the inputs is sensed at the rising edge of the clock, and 

the inputs can change while the clock is low. For the master-slave flip-flop, if the inputs change while the 

clock is low, the flip-flop output may be incorrect. For example, (in above Figure (b)), at t4, S = 1 and R 

= 0, so P changes to 1. Then S changes to 0 at t5, but P does not change, so at t5, Q changes to 1 after the 

rising edge of CLK. However, at t5, S = R = 0, so the state of Q should not change. We can solve this 

problem if we only allow the S and R inputs to change while the clock is high. 

 

J-K FLIP-FLOP: 

The J-K flip-flop (shown in the following Figure) is an extended version of the S-R flip-flop. The J-K 

flip-flop has three inputs—J, K, and the clock (CLK). The J input corresponds to S, and K corresponds to 

R. That is, if J = 1 and K = 0, the flip-flop output is set to Q = 1 after the active clock edge; and if K = 1 

and J = 0, the flip-flop output is reset to Q = 0 after the active edge.  

Unlike the S-R flip-flop, a 1 input may be applied simultaneously to J and K, in which case the flip-flop 

changes state after the active clock edge. When J = K = 1, the active edge will cause Q to change from 0 

to 1, or from 1 to 0. The next-state table and characteristic equation for the J-K flip-flop are given in 

Figure (b). 
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Figure (c) shows the timing for a J-K flip-flop. This flip-flop changes state a short time (tp) after the rising 

edge of the clock pulse, provided that J and K have appropriate values.  

If J = 1 and K = 0 when Clock = 0, Q will be set to 1 following the rising edge. If K = 1 and J = 0 when 

Clock = 0, Q will be set to 0 after the rising edge.  

Similarly, if J = K = 1, Q will change state after the rising edge. Referring to Figure 11-20(c), because Q 

= 0, J = l, and K = 0 before the first rising clock edge, Q changes to 1 at t1.  

Because Q = 1, J = 0, and K = 1 before the second rising clock edge, Q changes to 0 at t2. Because Q = 0, 

J = 1, and K = 1 before the third rising clock edge, Q changes to 1 at t3. 

 

One way to realize the J-K flip-flop is with two S-R latches connected in a master-slave arrangement, as 

shown in the following Figure.  

 

21CS33



ANALOG AND DIGITAL ELECTRONICS 
 

19 

This is the same circuit as for the S-R master-slave flip-flop; except S and R have been replaced with J 

and K, and the Q and Q outputs are feeding back into the input gates. Because S = JQ’Clk’ and R = 

K’QClk’, only one of S and R inputs to the first latch can be 1 at any given time. If Q = 0 and J = 1, then S 

= 1 and R = 0, regardless of the value of K. If Q = 1 and K = 1, then S = 0 and R = 1, regardless of the 

value of J. 

 

T FLIP-FLOP: 

The T flip-flop, also called the toggle flip-flop, is frequently used in building counters. Most CPLDs and 

FPGAs can be programmed to implement T flip-flops.  

The T flip-flop (shown in the following Figure (a)) has a T input and a clock input. When T = 1 the flip-

flop changes state after the active edge of the clock. When T = 0, no state change occurs.  

The next-state table and characteristic equation for the T flip-flop are given in Figure (b). The 

characteristic equation states that the next state of the flip-flop (Q
+
) will be 1 iff the present state (Q) is 1 

and T = 0 or the present state is 0 and T = 1. 

 

The following Figure shows a timing diagram for the T flip-flop. At times t2 and t4 the T input is 1 and 

the flip-flop state (Q) changes a short time (tp) after the falling edge of the clock pulse. At times tl and t3 

the T input is 0, and the clock edge does not cause a change of state. 

 

One way to implement a T flip-flop is to connect the J and K inputs of a J-K flip-flop together, as shown 

in the following Figure (a). Substituting T for J and K in the J-K characteristic equation gives; 

𝑄+ = 𝐽𝑄′ + 𝐾′𝑄 = 𝑇𝑄′ + 𝑇′𝑄 

which is the characteristic equation for the T flip-flop. Another way to realize a T flip-flop is with a D 

flip-flop and an exclusive-OR gate [Figure (b)]. The D input is Q ⊕ T, so Q
+
 = Q ⊕ TQ’ + T’Q, which 

is the characteristic equation for the T flip-flop. 
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